Типы связей в молекулах органических веществ

Оглавление

  1. Многообразие неорганических и органических веществ
  2. Теория химического строения органических соединений А. М. Бутлерова
  3. Изомерия и гомология органических веществ
  4. Классификация органических веществ
  5. Номенклатура органических соединений
  6. Углеводороды. Классификация углеводородов
  7. Гомологический ряд углеводородов
  8. Изомеры углеводородов
  9. Структурная изомерия
  10. Пространственная изомерия
  11. Электронное строение атома углерода
  12. Гибридизация орбиталей атома углерода
  13. Задания для самопроверки

Многообразие неорганических и органических веществ

Органическая химия — это химия соединений угле­рода. К неорганическим со­единениям углерода относят: оксиды углерода, угольную кислоту, карбонаты и гидро­карбонаты, карбиды. Органи­ческие вещества, кроме угле­рода, содержат водород, кислород, азот, фосфор, серу и др. элементы. Атомы углерода могут образо­вывать длинные неразветвленные и разветвленные цепи, кольца, присоединять другие элементы, по­этому число органических соединений приблизи­лось к 20 млн, тогда как неорганических веществ насчитывается немногим более 100 тысяч.

Основой развития органической химии явля­ется теория строения органических соединений А. М. Бутлерова. Важная роль в описании стро­ения органических соединений принадлежит по­нятию валентности, которая характеризует спо­собность атомов к образованию химических связей и определяет их число. Углерод в органических соединениях всегда четырехвалентен. Основным постулатом теории А. М. Бутлерова является по­ложение о химическом строении вещества, т. е. химическая связь. Этот порядок отображают при помощи структурных формул. Теория Бутлерова утверждает идею о том, что каждое вещество име­ет определенное химическое строение и свойства веществ зависят от строения.

Взаимосвязь различных классов органических веществ
Взаимосвязь различных классов органических веществ

Теория химического строения органических соединений А. М. Бутлерова

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии осно­вополагающей стала теория строения органиче­ских соединений А. М. Бутлерова.

теория строения органиче­ских соединений А. М. Бутлерова
Теория химического строения органических соединений А. М. Бутлерова

Основным постулатом теории Бутлерова явля­ется положение о химическом строении вещества, под которым понимается порядок, последователь­ность взаимного соединения атомов в молекулы, т. е. химическая связь.

Химическое строение — порядок соединения атомов химических элементов в мо­лекуле согласно их валент­ности.

Этот порядок может быть отображен при помощи структурных формул, в кото­рых валентности атомов обозначаются черточка­ми: одна черточка соответствует единице валент­ности атома химического элемента. Например, для органического вещества метана, имеющего моле­кулярную формулу СН4, структурная формула вы­глядит так:

clip_image005

Основные положения теории А. М. Бутлерова:

· Атомы в молекулах органических веществ связаны друг с другом согласно их валентности. Углерод в органических со­единениях всегда четырехва­лентен, а его атомы способны соединяться друг с другом, образуя различные цепи.

· Свойства веществ опре­деляются не только их каче­ственным и количественным составом, но и порядком со­единения атомов в молекуле, т. е. химическим строением вещества.

· Свойства органических соединений зависят не только от состава вещества и поряд­ка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп ато­мов друг на друга.

Теория строения органи­ческих соединений является динамичным и развиваю­щимся учением. По мере развития знаний о при­роде химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структур­ных, электронными формулами. В таких форму­лах показывают направление смещения электрон­ных пар в молекуле.

Квантовая химия и химия строения органи­ческих соединений подтвердили учение о про­странственном направлении химических связей (цис- и транс изомерия), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в мо­лекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направле­ний и механизмов протекания химических реак­ций.

Органические вещества имеют ряд особенно­стей.

· В состав всех органических веществ входят углерод и водород, поэтому при горении они обра­зуют углекислый газ и воду.

· Органические вещества построены сложно и могут иметь огромную молекулярную массу (бел­ки, жиры, углеводы).

· Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов.

· Для органических веществ характерной яв­ляется изомерия.

Изомерия и гомология органических веществ

Свойства органических веществ зависят не толь­ко от их состава, но и от порядка соединения ато­мов в молекуле.

clip_image006

Изомерия — это явление существования разных веществ — изомеров с одинаковым качественным и количественным составом, т. е. с одинаковой молекуляр­ной формулой.

Различают два вида изо­мерии: структурную и про­странственную (стереоизо­мерию). Структурные изомеры отличаются друг от друга по­рядком связи атомов в молекуле; стереоизомеры — расположением атомов в пространстве при одинако­вом порядке связей между ними.

Основные виды изомерии:

· Структурная изомерия — вещества разли­чаются порядком связи атомов в молекулах:

1) изомерия углеродного скелета;

2) изомерия положения:

  • кратных связей;
  • заместителей;
  • функциональных групп;

3) изомерия гомологических рядов (межклассо­вая).

· Пространственная изомерия — молекулы ве­ществ отличаются не порядком связи атомов, а по­ложением их в пространстве: цис-, транс-изомерия (геометрическая).

Виды изомерии

Межкласовая изомерия

Классификация органических веществ

Известно, что свойства органических веществ определяются их составом и химическим строени­ем. Поэтому неудивительно, что в основе класси­фикации органических соединений лежит именно теория строения — теория А. М. Бутлерова. Классифицируют органические вещества по наличию и по­рядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органиче­ского вещества является ее скелет — цепь атомов угле­рода. В зависимости от по­рядка соединения атомов углерода в этой цепи ве­щества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цепи (ци­клы) в молекулах.

Помимо атомов углерода и водорода молеку­лы органических веществ могут содержать атомы и других химических элементов. Вещества, в мо­лекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероци­клическим соединениям.

Гетероатомы (кислород, азот и др.) могут вхо­дить в состав молекул и ациклических соединений, образуя в них функциональные группы, например,

гидроксильную

clip_image009,

карбонильную

clip_image010,

кар­боксильную

clip_image011,

аминогруппу

clip_image012.

Функциональная группа — группа атомов, которая определяет наиболее характерные хими­ческие свойства вещества и его принадлежность к определенному классу соединений.

Номенклатура органических соединений

Рекомендуем посмотреть наш гайд по названию органических веществ!

В начале развития орга­нической химии открывае­мым соединениям присваи­вались тривиальные назва­ния, часто связанные с исто­рией их получения: уксусная кислота (являющаяся осно­вой винного уксуса), масля­ная кислота (образующаяся в сливочном масле), гликоль (т. е. «сладкий») и т. д. По мере увеличения числа новых открытых веществ возникла необходимость связывать названия с их строением. Так появи­лись рациональные названия: метиламин, диэти­ламин, этиловый спирт, метилэтилкетон, в основе которых лежит название простейшего соединения. Для более сложных соединений рациональная но­менклатура непригодна.

Названия функциональных групп

Теория строения А. М. Бутлерова дала основу для классификации и номенклатуры органических соединений по структурным элементам и по распо­ложению атомов углерода в молекуле. В настоящее время наиболее употребляемой является номен­клатура, разработанная Международным союзом теоретической и прикладной химии (IUPAC), кото­рая называется номенклатурой ИЮПАК. Правила ИЮПАК рекомендуют для образования названий несколько принципов, один из них — принцип замещения. На основе этого разработана замести­тельная номенклатура, которая является наиболее универсальной. Приведем несколько основных правил заместительной номенклатуры и рассмо­трим их применение на примере гетерофункцио­нального соединения, содержащего две функцио­нальные группы, — аминокислоты лейцина:

clip_image014

1. В основе названия соединений лежит родо­начальная структура (главная цепь ациклической молекулы, карбоциклическая или гетероцикличес­кая система). Название родоначальной структуры составляет основу названия, корень слова.

В данном случае родоначальной структурой яв­ляется цепь из пяти атомов углерода, связанных одинарными связями. Таким образом, коренная часть названия — пентан.

2. Характеристические группы и заместители (структурные элементы) обозначаются префикса­ми и суффиксами. Характеристические группы подразделяются по старшинству. Порядок стар­шинства основных групп:

clip_image015

Выявляют старшую характеристическую груп­пу, которую обозначают в суффиксе. Все остальные заместители называют в префиксе в алфавитном по­рядке.

В данном случае старшей характеристической группой является карбоксильная, т. е. это соеди­нение относится к классу карбоновых кислот, по­этому к коренной части названия добавляем -овая кислота. Второй по старшинству группой являет­ся аминогруппа, которая обозначается префиксом амино-. Кроме этого, молекула содержит углево­дородный заместитель метил-. Таким образом, ос­новой названия является аминометилпентановая кислота.

3.     В название включают обозначение двойной и тройной связи, которое идет сразу после корня.

Рассматриваемое соединение не содержит крат­ных связей.

4.     Атомы родоначальной структуры нумеруют. Нумерацию начинают с того конца углеродной це­пи, к которому ближе расположена старшая ха­рактеристическая группа:

clip_image016

Нумерацию цепи начинают с атома углерода, входящего в состав карбоксильной группы, ему присваивается номер 1. В этом случае аминогруп­па окажется при углероде 2, а метил — при угле­роде 4.

Таким образом, природная аминокислота лей­цин по правилам номенклатуры ИЮПАК называ­ется 2-амино-4-метилпентановая кислота.

Углеводороды. Классификация углеводородов

Углеводороды — это соединения, состоящие только из атомов водорода и углерода.

Классификация углеводородов

clip_image020

Классификация углеводородов по типу связи

Классификация углеводородов по функциональной группе

В зависимости от строения углеродной цепи ор­ганические соединения разделяют на соединения с открытой цепью — ациклические (алифатичес­кие) и циклические — с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атома­ми углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие ци­клы с особой замкнутой системой р-электронов, об­разующих общую π-систему (единое π-электронноеоблако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и ци­клические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в от­личие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды на­зывают алканами, они имеют общую формулу СnН2n+2, где n — число атомов углерода. Старое их название часто употребляется и в настоящее вре­мя — парафины:

clip_image025

Непредельные алифатические углеводороды, содержащие одну двойную связь, получили назва­ние алкены. Они имеют общую формулу CnH2n:

clip_image026

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиена­ми. Их общая формула CnH2n-2:

clip_image027

Непредельные алифатические углеводороды с одной тройной связью называют алкинами. Их общая формула CnH2n2:

clip_image028

Предельные алициклические углеводороды — циклоалканы, их общая формула СnН2n:

clip_image029

Особая группа углеводородов, ароматических, или аренов (с замкнутой общей л-электронной си­стемой), известна из примера углеводородов с об­щей формулой СnН2n6:

clip_image030

Таким образом, если в их молекулах один или большее число атомов водорода заменить на дру­гие атомы или группы атомов (галогены, гидрок­сильные группы, аминогруппы и др.), образуются производные углеводородов: галогенопроизводные, кислородсодержащие, азотсодержащие и другие ор­ганические соединения.

 

Гомологический ряд углеводородов

Углеводороды и их производные с одной и той же функциональной группой образуют гомологи­ческие ряды.

Гомологическим рядом называют ряд соедине­ний, принадлежащих к одному классу (гомологов), рас­положенных в порядке воз­растания их относительных молекулярных масс, сход­ных по строению и химиче­ским свойствам, где каждый член отличается от предыду­щего на гомологическую разность CH2. Например: CH4 — метан, C2H6 — этан, C3H8 — пропан, C4H10 — бутан и т. д. Сходство хи­мических свойств гомологов значительно упрощает изуче­ние органических соединений.

Изомеры углеводородов

Те атомы или группы атомов, которые опреде­ляют самые характерные свойства данного класса веществ, называются функциональными груп­пами.

Функциональная группа. Радикал.

Галогенопроизводные углеводородов можно рас­сматривать как продукты за­мещения в углеводородах од­ного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предель­ные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных пре­дельных углеводородов:

clip_image033

а состав выражается формулой

clip_image034

где R — остаток от предельного углеводорода (алка­на), углеводородный радикал (это обозначение исполь­зуется и далее при рассмотрении других классов ор­ганических веществ), Г — атом галогена (F, Cl, Br, I).

Например:

clip_image035

Приведем один пример дигалогенопроизводного:

clip_image036

К кислородсодержащим органическим веще­ствам относят спирты, фенолы, альдегиды, кетоны, карбоновые кислоты, простые и сложные эфиры. Спирты — производные углеводородов, в кото­рых один или несколько атомов водорода замеще­ны на гидроксильные группы.

Спирты называют одноатомными, если они имеют одну гидроксильную группу, и предельны­ми, если они являются производными алканов.

Общая формула предельных одноатомных спир­тов:

clip_image037

а их состав выражается общей формулой:

clip_image038

Например:

clip_image039

Известны примеры многоатомных спиртов, т. е. имеющих несколько гидроксильных групп:

clip_image040

Фенолы — производные ароматических углево­дородов (ряда бензола), в которых один или не­сколько атомов водорода в бензольном кольце за­мещены на гидроксильные группы.

Простейший представитель с формулой C6H5OH или

clip_image041

называется фенолом.

Альдегиды и кетоны — производные углеводо­родов, содержащие карбонильную группу атомов

clip_image042

(карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая — с углево­дородным радикалом. Общая формула альдегидов:

clip_image043

Например:

clip_image044

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами, об­щая формула кетонов:

clip_image045

Например:

clip_image046

Состав предельных альдегидов и кетонов выра­жается формулой С2nН2nО.

Карбоновые кислоты — производные углеводо­родов, содержащие карбоксильные группы

clip_image047

(или —СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных однооснов­ных кислот:

clip_image048

Их состав выражается формулой СnН2nО2.

Например:

clip_image049

Простые эфиры представляют собой органиче­ские вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R—O—R или R1—O—R2.

Радикалы могут быть одинаковыми или разны­ми. Состав простых эфиров выражается формулой CnH2n+2O.

Например:

clip_image050

Сложные эфиры — соединения, образованные замещением атома водорода карбоксильной груп­пы в карбоновых кислотах на углеводородный ра­дикал.

Общая формула сложных эфиров:

clip_image051

Например:

clip_image052

Из азотсодержащих органических веществ из­вестны нитросоединения, амины и аминокислоты.

Нитросоединения — производные углеводоро­дов, в которых один или несколько атомов водо­рода замещены на нитрогруппу —NO2.

Общая формула предельных мононитросоедине­ний:

clip_image053

а состав выражается общей формулой CnH2n+1NO2.

Например:

clip_image054

Нитропроизводные аренов:

clip_image055

Амины — соединения, которые рассматривают как производные аммиака (NH3), в котором атомы водорода замещены на углеводородные радикалы. В зависимости от природы радикала амины мо­гут быть алифатическими, например:

clip_image056

и ароматическими, например:

clip_image057

В зависимости от числа замещенных на радика­лы атомов водорода различают:

первичные амины с общей формулой:

clip_image058

вторичные — с общей формулой:

clip_image059

третичные — с общей формулой:

clip_image060

В частном случае у вторичных, а также третич­ных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в кото­рых один атом водорода замещен на аминогруп­пу —NH2. Состав предельных первичных аминов выражается формулой CnH2n+3N.

Например:

clip_image061

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радика­лом: аминогруппу —NH2 и карбоксил —COOH.

Общая формула α-аминокислот (они наиболее важны для построения белков, из которых состоят живые организмы):

clip_image062

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой CnH2n+1NO2.

Например:

clip_image063

Известны и другие важные органические соеди­нения, которые имеют несколько разных или одинаковых функциональных групп, длинные линей­ные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлеж­ности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы ве­ществ: углеводы, белки, ну­клеиновые кислоты, антибио­тики, алкалоиды и др.

В настоящее время из­вестно также много соедине­ний, которые можно отнести и к органическим, и к неорганическим. х назы­вают элементоорганическими соединениями. Некоторые из них можно рассматривать как производные углеводородов.

Например:

clip_image064

Существуют соединения, имеющие одинаковую молекулярную формулу, выражающую состав ве­ществ.

Явление изомерии состо­ит в том, что могут существо­вать несколько разных по свойствам веществ, имеющих одинаковый состав молекул, но разное строение. Эти ве­щества называют изомерами.

В нашем случае это меж­классовые изомеры: цикло­алканы и алканы, алкадиены и алкины, предельные одно­атомные спирты и простые эфиры, альдегиды и кетоны, предельные одноос­новные карбоновые кислоты и сложные эфиры.

Гомологический ряд

Гомологи определение

Структурная изомерия

Выделяют следующие разновидности струк­турной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных клас­сов органических соединений (межклассовую изо­мерию).

Изомерия углеродного скелета обусловлена раз­личным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле С4Н10 соответ­ствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изопентан и неопентан.

clip_image069

C увеличением числа атомов углерода в молеку­ле число изомеров быстро растет. Для углеводоро­да С10Н22 их уже 75, а для углеводорода С20Н44 — 366 319.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:

clip_image070

Изомерия различных классов органических соединений (межклассовая изомерия) обусловле­на различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую мо­лекулярную формулу, но принадлежащих к раз­ным классам. Так, молекулярной формуле С6Н12 соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан.

clip_image071

Изомерами являются углеводород, относящий­ся к алкинам, — бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

clip_image072

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу С4Н10O:

clip_image073

Структурными изомерами являются аминоук­сусная кислота и нитроэтан, отвечающие молекулярной формуле С2Н5NO2:

clip_image074

Изомеры этого типа содержат различные функ­циональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры поло­жения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую.

Геометрическая изомерия характерна для со­единений, содержащих двойные связи, и цикли­ческих соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невоз­можно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс­положение). Обозначения цис- и транс- обычно от­носят к паре одинаковых заместителей.

clip_image075

Геометрические изомеры различаются по физи­ческим и химическим свойствам.

Оптическая изомерия возникает, если молеку­ла несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называ­ют асимметрическим. Примером такой молекулы является молекула α-аминопропионовой кислоты (α-аланина) CH3CH(NH2)OH.

Молекула α-аланина ни при каком перемеще­нии не может совпасть со своим зеркальным отра­жением. Такие пространственные изомеры называ­ются зеркальными, оптическими антиподами, или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов — биологических катали­заторов. Молекулы данных веществ должны под­ходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположе­ние участков молекул и другие пространственные факторы имеют для течения этих реакций боль­шое значение. Такие реакции называются стерео­селективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологиче­ское действие (начиная от вкуса и запаха и закан­чивая лекарственным действием) резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологичес­кой активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов — обмена веществ.

Изомерия межклассовая

clip_image079
Изомерия

Электронное строение атома углерода

Углерод, входящий в состав органических соединений проявляет постоянную валентность. На последнем энергетическом уровне атома углерода содержится 4 электрона, два из которых занимают 2s-орбиталь, имеющую сферическую форму, а два электрона занимают 2р-орбитали, имеющие гантелеподобную форму. При возбуждении один электрон из 2s-орбитали может переходить на одну из вакантных 2р-орбиталей. Этот переход требует некоторых энергетических затрат (403 кДж/моль). В результате возбужденный атом углерода имеет 4 неспаренных электрона и его электронная конфигурация выражается формулой 2s1 2p3 .

Углерод в органических соединениях четырех­валентен.
Электронное строение атома углерода

clip_image080clip_image081

Атом   углерода в возбужденном состоянии способен образовывать 4 ковалентных связи за счет 4 собственных неспаренных электронов и 4 электронов других атомов. Так, в случае углеводорода метана (СН4)   атом углерода образует 4 связи с s-электронами   атомов водорода. При этом должны были бы образовываться 1 связь типа s-s (между s-электроном атома углерода и s-электроном атома водорода) и 3 p-s-связи   (между 3 р-электронами атома углерода и 3 s-электронами 3-х атомов водорода). Отсюда вытекает вывод о неравноценности четырех ковалентных связей, образуемых атомом углерода. Однако, практический опыт химии свидетельствует о том, что все 4 связи в молекуле метана абсолютно равноценны, а молекула метана имеет тетраэдрическое строение с валентными   углами 109,50, чего не могло бы быть при неравноценности связей. Ведь только орбитали р-электронов ориентированы в пространстве по взаимно перпендикулярным осям x, y, z, а орбиталь s-электрона имеет сферическую форму, поэтому направление образования связи с этим электроном было бы произвольным. Объяснить это противоречие смогла теория гибридизации. Л.Поллинг высказал предположение, что в любых молекулах не существует изолированных друг от друга связей. При   образовании связей орбитали всех валентных электронов перекрываются. Известно несколько типов гибридизации электронных орбиталей. Предполагается, что в молекуле метана и других алканов в гибридизацию вступает 4 электрона.

Гибридизация орбиталей атома углерода

Гибридизация орбиталей — это изменение формы и энергии некоторых электронов при образовании ковалентной связи, приводящее к более эффективному перекрыванию орбиталей и повышению прочности связей. Гибридизация орбиталей происходит всегда, когда в образовании связей участвуют электроны, принадлежащие к различным типам орбиталей.

Связи в молекулах органических веществ

Гибридизация

1. sp3-гибридизация (первое валентное состояние углерода). При sp3-гибридизации 3 р-орбитали и одна s-орбиталь возбужденного атома углерода взаимодействуют таким образом, что получаются орбитали абсолютно одинаковые по энергии и симметрично расположенные в пространстве. Это преобразование можно записать так:

clip_image086

При гибридизации общее число орбиталей не изменяется, а изменяется только их энергия и форма. Показано, что sр3-гибридизация орбитали напоминают объемную восьмерку, одна из лопастей которой значительно больше другой. Четыре гибридных орбитали вытянуты от центра к вершинам  правильного тетраэдра под углами 109,50. Связи образованные  гибридными электронами (например связь s-sp3) более прочные, чем связи, осуществляемые негибридизованными р-электронами (например, связь-s-p). Поскольку гибридная sp3-орбиталь обеспечивает большую площадь перекрывания электронных орбиталей, чем негибридизованная р-орбиталь. Молекулы, в которых осуществляется sp3— гибридизация имеют тетраэдрическое строение. К ним, кроме метана, относятся гомологи метана, неорганические молекулы типа аммиака. На рисунках показана гибридизованная орбиталь и тетраэдрическая молекула метана.

clip_image087clip_image088

Химические связи, возникающие в метане между атомами углерода и водорода относятся к типу σ-связей (sp3-s-связь). Вообще говоря любая сигма-связь характеризуется тем, что электронная плотность двух связанных между собой атомов, перекрывается по линии, соединяющей центры (ядра) атомов. σ-Связи отвечают максимально возможной степени перекрывания атомных орбиталей, поэтому они достаточно прочны.

2. sp2-гибридизация (второе валентное состояние углерода). Возникает в результате перекрывания одной 2s и двух 2р орбиталей. Образовавшиеся sp2-гибридные орбитали располагаются в одной плоскости под углом 1200 друг к другу, а негибридизованная р-орбиталь перпендикулярно к ней. Общее число орбиталей не меняется — их четыре.

clip_image089

Состояние sp2-гибридизации встречается в молекулах алкенов, в карбонильной и карбоксильной группах, т.е. у соединений, имеющих в своем составе двойную связь. Так, в молекуле этилена гибридизованные электроны атома углерода образуют 3 σ-связи (две связи типа sp2-s между атомом углерода и атомами водорода и одна связь типа sp2 -sp2 между атомами углерода). Оставшийся негибридизованным   р-электрон одного атома углерода образует π-связь с негибридизованным р-электроном второго атома углерода. Характерной особенностью π-связи является то, что перекрывание орбиталей   электронов идет вне линии, соединяющей два атома. Перекрывание орбиталей идет выше и ниже σ-связи, соединющей оба атома углерода. Таким образом двойная связь является комбинацией σ- и π-связей. На первых двух рисунках показано, что в молекуле этилена валентные углы между атомами, образующими молекулу этилена, составляют 1200 (соответственно ориентации с пространстве трех sp2-гибридных орбиталей). На рисунках показано образование π-связи.

clip_image090clip_image091

Поскольку площадь перекрывания негибридизованных р-орбиталей в π-связях меньше, чем площадь перекрывания орбиталей в σ-связях, то π-связь менее прочна, чем σ-связь и легче разрывается в химических реакциях.

3. sp-гибридизация (третье валентное состояние   углерода). В состоянии sр-гибридизации атом углерода имеет две sр-гибридные орбитали, расположенные линейно под углом 1800 друг к другу и две негибридизованные р-орбитали расположенные в двух взаимно перпендикулярных плоскостях. sр-гибридизация характерна для алкинов и нитрилов, т.е. для соединений, имеющих в своем составе тройную связь.

clip_image092

Так, в молекуле   ацетилена валентные углы между атомами составляют 180o.   Гибридизованные электроны атома углерода образуют 2 σ-связи (одна связь sp-s между атомом углерода и атомом водорода и другая связь типа sp-sp между атомами углерода. Два негибридизованных р-электрона одного атома углерода образуют две π-связи с негибридизованными р электронами второго атома углерода. Перекрывание орбиталей р-электронов идет не только выше и ниже σ-связи, но и спереди и сзади, а суммарное облако р-электронов имеет цилиндрическую форму. Таким образом тройная связь является комбинацией одной σ-связи и двух π-связей. Наличие в молекуле ацетилена менее прочных двух π-связей, обеспечивает способность этого вещества вступать в реакции присоединения с разрывом тройной связи.

clip_image093ацетилен

Справочный материал для прохождения тестирования:

1 КОММЕНТАРИЙ

  1. именно из-за настолько высокой сложности предмета, такой высокий уровень входа в профессию, жаль только, что такой уровень абсолютно не подкреплен вознаграждением за труд. Химия не стала мейнстримом, как программирование.

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here