Menu

Раздел:

Электронная конфигурация атома

Top


Электронная конфигурация атома - Химия ЕГЭ ОГЭ

Перейти к контенту

Главное меню:

Theory
Строение атома
Оглавление
Электроны

Понятие атом возникло еще в античном мире для обозначения частиц вещества. В переводе с греческого атом означает «неделимый». Ирландский физик Стони на основании опытов пришел к выводу, что электричество переносится мельчайшими частицами, сущее твующими в атомах всех химических элементов. В 1891 г. Стони предложил эти частицы назвать электронами, что по-гречески означает «янтарь». Через несколько лет после того, как электрон получил свое название, английский физик Джозеф Томсон и французский физик Жан Перрен доказали, что электроны несут на себе отрицательный заряд. Это наименьший отрицательный заряд, который в химии принят за единицу (-1). Томсон даже сумел определить скорость движения электрона (она равна скорости света — 300 000 км/с) и массу электрона (она почти в 2000 раз меньше массы атома водорода).

Группы элементов
ЗАПОМНИ

Молекула — мельчай­шая электронейтраль­ная частица вещества, состоящая из химиче­ски связанных атомов и определяющая его свойства.
Особенности строения молекул определяют физические свойства вещества, состоящего из этих молекул.

Состояние электронов в атоме

Под состоянием электрона в атоме понимают со­вокупность информации об энергии определенного электрона и пространстве, в котором он находится. Электрон в атоме не имеет траектории движения, т. е. можно говорить лишь о веро­ятности нахождения его в пространстве вокруг ядра.

Модель атомаОн может находиться в лю­бой части этого пространства, окружающего ядро, и совокупность его различных положений рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно предста­вить себе так: если бы удалось через сотые или миллионные доли секунды сфотографиро­вать положение электрона в атоме, как при фотофинише, то электрон на таких фотогра­фиях был бы представлен в виде точек. При наложении бесчисленного множества та­ких фотографий получилась бы картина электронного облака с наибольшей плот­ностью там, где этих точек будет больше всего.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называ­ется орбиталью. В нем заключено приблизительно 90 % электронного облака, и это означает, что около 90 % времени электрон находится в этой части пространства. По форме различают 4 известных ныне типа орбиталей, которые обозначаются латинскими буквами s, p, d и f. Графическое изображение некоторых форм электронных орбиталей представлено на рисунке.

орбиталиВажнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны, обладающие близкими значениями энергии, образуют единый электронный слои, или энергетический уровень. Энергетические уровни нумеруют, начиная от ядра, — 1, 2, 3, 4, 5, 6 и 7.

Целое число n, обозначающее номер энергетического уровня, называют главным квантовым числом. Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня, электроны последующих уровней будут характеризоваться большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внешнего уровня.

ЗАПОМНИ

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д. И. Менделеева, к которому принадлежит хи­мический элемент: у атомов элементов первого периода один энергетический уровень; второго пе­риода — два; седьмого периода — семь.
Наибольшее число электронов на энергетичес­ком уровне определяется по формуле:
 
N = 2n2,

где N — максимальное число электронов; n — но­мер уровня, или главное квантовое число. Следовательно, на первом, ближайшем к ядру энергетическом уровне может находиться не бо­лее двух электронов; на втором — не более 8; на третьем — не более 18; на четвертом — не бо­лее 32.

Начиная со второго энергетического уровня (n = 2) каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром. Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуровень; второй — два; третий — три; четвертый — четыре подуровня. Подуровни в свою очередь образованы орбиталями. Каждому значению n соответствует число орбиталей, равное n.

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: s, p, d, f.




Протоны и нейтроны



Атом любого химического элемента сравним с крохотной Солнечной системой. Поэтому такую модель атома, предложенную Э. Резерфордом, называют планетарной.
Атомное ядро, в котором сосредоточена вся масса атома, состоит из частиц двух видов — протонов и нейтронов.

Протоны имеют заряд, равный заряду электронов, но противоположный по знаку (+1), и массу, равную массе атома водорода (она принята в химии за единицу). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона.

Протоны и нейтроны вместе называют нуклонами (от лат. nucleus — ядро). Сумма числа протонов и нейтронов в атоме называется массовым числом. Например, массовое число атома алюминия:

аллюиминий

13 + 14 = 27
число протонов 13, число нейтронов 14, массовое число 27

Так как массой электрона, ничтожно малой, можно пренебречь, то очевидно, что в ядре сосредоточена вся масса атома. Электроны обозначают e-
 
.  
ЗАПОМНИ

Заряд протона принят за 1, поэтому заряд ядра равен числу протонов в его составе.
Поскольку атом электронейтрален, то также очевидно, что число протонов и электронов в атоме одинаково. Оно равно порядковому номеру химического элемента, присвоенному ему в Периодической системе. Масса атома складывается из массы протонов и нейтронов. Зная порядковый номер элемента (Z), т. е. число протонов, и массовое число (А), равное сумме чисел протонов и нейтронов, можно найти число нейтронов (N) по формуле:

N = A - Z

Например, число нейтронов в атоме железа равно:

56 - 26 = 30
ЗАПОМНИ

Изотоп (изос — «один», топос — «место») — занимающий одно место в Периодической системе.


Изотопы

Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разное массовое число, называются изотопами. Химические элементы, встречающиеся в природе, являются смесью изотопов. Так, углерод имеет три изотопа с массой 12, 13, 14; кислород — три изотопа с массой 16, 17, 18 и т. д. Обычно приводимая в Периодической системе относительная атомная масса химического элемента является средним значением атомных масс природной смеси изотопов данного элемента с учетом их относительного содержания в природе. Химические свойства изотопов большинства химических элементов совершенно одинаковы. Однако изотопы водорода сильно различаются по свойствам из-за резкого кратного увеличения их относительной атомной массы; им даже присвоены индивидуальные названия и химические знаки.



Строение электронных оболочек атомов элементов первых четырех периодов периодической системы Д. И. Менделеева
Элементы первого периода

Схема электронного строения атома водорода:


Схемы электронного строения атомов показы­вают распределение электронов по электронным слоям (энергетическим уровням).

 
Графическая электронная формула атома во­дорода (показывает распределение электронов по энергетическим уровням и подуровням):



Графические электронные формулы атомов показывают распределение электронов не только по уровням и подуровням, но и по орбиталям.



В атоме гелия первый электронный слой завер­шен — в нем 2 электрона. Водород и гелий — s-элементы; у этих атомов заполняется электронами s-орбиталь.




Элементы второго периода

У всех элементов второго периода первый элек­тронный слой заполнен, и электроны заполняют s- и р-орбитали второго электронного слоя в соот­ветствии с принципом наименьшей энергии (снача­ла s, а затем р) и правилами Паули и Хунда.

В атоме неона второй электронный слой завер­шен — в нем 8 электронов.


Элементы третьего периода

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и 3d- подуровни.

У атома магния достраивается 3s- электронная орбиталь. Na и Mg — s-элементы.
 
У алюминия и последующих элементов запол­няется электронами 3р-подуровень.
 
У элементов третьего периода остаются неза­полненными 3d-орбитали.
 
Все элементы от Al до Ar — р-элементы. s- и р-элементы образуют главные подгруппы в Пе­риодической системе.




Элементы четвертого - седьмого периодов

У атомов калия и кальция появляется четвер­тый электронный слой, заполняется 4s-подуровень, т. к. он имеет меньшую энергию, чем 3d-подуровень.
 
К, Са — s-элементы, входящие в главные под­группы. У атомов от Sc до Zn заполняется электро­нами 3d-подуровень. Это 3d-элементы. Они входят в побочные подгруппы, у них заполняется пред­внешний электронный слой, их относят к переход­ным элементам.
 
Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4s- на 3d-подуровень, что объясняется большей энергетической устойчи­востью образующихся при этом электронных кон­фигураций 3d5 и 3d10:

Хром и медь
 
В атоме цинка третий электронный слой завер­шен — в нем заполнены все подуровни 3s, 3р и 3d, всего на них 18 электронов. У следующих за цин­ком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень.

Элементы от Ga до Кr — р-элементы.

У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f-подуровни.У элементов пятого периода идет заполнение по-дуровней в следующем порядке: 5s - 4d - 5р. И так-же встречаются исключения, связанные с «провалом» электронов, у 41Nb, 42Мо, 44Ru, 45Rh, 46Pd, 47Ag.

В шестом и седьмом периодах появляются f-элементы, т. е. элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

4f-элементы называют лантаноидами.
5f-элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55Cs и 56Ва — 6s-элементы; 57La ... 6s25dx — 5d-элемент; 58Се — 71Lu — 4f-элементы; 72Hf - 80Hg — 5d-элементы; 81Т1 - 86Rn — 6d-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполне­ния электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f-подуровней, т. е. nf7и nf14. В зависимости от того, какой подуровень атома заполняется электронами последним, все элемен­ты делят на четыре электронных семейства, или блока:
 
  • s-элементы. Электронами заполняется s-под­уровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп.

  • p-элементы. Электронами заполняется р-подуровень внешнего уровня атома; к р-элементам относятся элементы главных подгрупп III— VIII групп.

  • d-элементы. Электронами заполняется d-под­уровень предвнешнего уровня атома; к d-эле­ментам относятся элементы побочных подгрупп I—VIII групп, т. е. элементы вставных декад больших периодов, расположенных между s- и р-элементами. Их также называют переход­ными элементами.

  • f-элементы. Электронами заполняется f-подуро­вень третьего снаружи уровня атома; к ним от­носятся лантаноиды и антиноиды.




Электронная конфигурация атома
Основное и возбужденное состояния

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского — «веретено»), т. е. обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемый оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули. Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, т. е. электроны с противоположными спинами. На рисунке показана схема подразделения энергетических уровней на подуровни и очередность их заполнения.



Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек — записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины, при этом по принципу Паули будут уже противоположно направленными.
Итог урока

Знать  строение атома, состав ядра и его определение, см. вкладку!

Состав ядра

Знать заряды элементарных частиц, знать различие между изатопами, изобарами и нуклеидами!

Нуклиды
Относительная масса элемента

Знать определение и виды орбиталей, а также порядок их заполнения!

Порядок заполнения орбиталей



Запомнить правила и порядок заполнения электронных уровней и подуровней, правило Хунда, принцип Паули:

Правило Хунда — правило квантовой химии, определяющее порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: суммарное значение спинового квантового числа электронов данного подслоя должно быть максимальным. Сформулировано Фридрихом Хундом в 1925 году.
Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

Другая формулировка: Ниже по энергии лежит тот атомный терм, для которого выполняются два условия.
  1. Мультиплетность максимальна
  2. При совпадении мультиплетностей суммарный орбитальный момент L максимален.
Разберём это правило на примере заполнения орбиталей p-подуровня p-элементов второго периода (то есть от бора до неона (в приведённой ниже схеме горизонтальными чёрточками обозначены орбитали, вертикальными стрелками — электроны, причём направление стрелки обозначает ориентацию спина).

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частицы с полуцелым спином) не могут одновременно находиться в одном и том же квантовом состоянии.

Правило Клечковского по мере увеличения суммарного числа электронов в атомах (при возрастании зарядов их ядер, или порядковых номеров химических элементов) атомные орбитали заселяются таким образом, что появление электронов на орбитали с более высокой энергией зависит только от главного квантового числа n и не зависит от всех остальных квантовых чисел, в том числе и от l. Физически это означает, что в водородоподобном атоме (в отсутствие межэлектронного отталкивания) орбитальная энергия электрона определяется только пространственной удаленностью зарядовой плотности электрона от ядра и не зависит от особенностей его движения в поле ядра. Поэтому энергетическая последовательность орбиталей в водородоподобном атоме выглядит просто:



Принцип Паули, Правило Хунта

Запомнить исключения из правила Клечковского:

Эмпирическое правило Клечковского и вытекающее из него схема очерёдностей несколько противоречатреальной энергетической последовательности атомых орбиталей только в двух однотипных случаях: у атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au имеет место провал электрона с s-подуровня внешнего слояна d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома, аименно: после заполнения двумя электронами орбитали 6s следующий электрон появляется на орбитали 5d,а не 4f, и только затем происходит заселение четырнадцатью электронами 4f орбиталей, затем продолжается и завершается заселение десятиэлектронного состояния 5d. Аналогичная ситуация характерна и дляорбиталей 7s, 6d и 5f.

Хром

Распределение элекронов в атоме хрома - согласно правилам(слева/сверху) и реальное(справа/внизу), согласно исключениям из правила Клечковского:

Распределение элекронов в атоме меди - согласно правилам(слева/сверху) и реальное(справа/внизу), согласно исключениям из правила Клечковского:


Научится отличать и строить:

  • Схему электронного строения атома

  • Электронную формулу атома

  • Графическую электронную формулу атома

Порядок решения:

Электронные формулы атомов химических элементов составляют в следующем порядке:

  • Сначала по номеру элемента в таблице Д. И. Менделеева определяют общее число электронов в атоме;

  • Затем по номеру периода, в котором расположен элемент, определяют число энергетических уровней;

  • Уровни разбивают на подуровни и орбитали, и заполняют их электронами в соответствии Принципом наименьшей энергии


1. у элементов главных подгрупп (s-;p-элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu, Ag, Au, Cr, Nb, Mo, Ru, Rh, у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.



Знать что такое основное и возбужденное состояние!


Задания для самопроверки
 
Задания для самопроверки являются обязательным условием для усвоения материала, к каждому разделу прилагаются тестовые задания по пройденной тематике, которые необходимо решить.

Решив все задания из раздела, вы увидите свой результат и сможете посмотреть пояснения и решения ко всем примерам, что поможет понять какие ошибки вы совершили, и где ваши знания необходимо укрепить!

Тест представляет собой 10-20 заданий, вопросы на задания и ответы перемешиваются случайным образом, и берутся из созданной нами базы вопросов!

Постарайтесь получить выше 90% верных ответов, чтобы быть уверенными в своих знаниях!
 
Если вы занимаетесь с репетитором, то пишите в начале тестирования свое реальное имя! Полагаясь на ваше имя, репетитор найдет пройденное вами тестирование, просмотрит ваши ошибки и учтет ваши пробелы чтобы в дальнейшем их заполнить!

Пользуйтесь только справочным материалом представленным ниже, если вы хотите проверить закрепление материала!

После прохождения теста посмотрите ответы к вопросам где вы ошиблись и закрепите материал перед повторным прохождением!
 
Справочный материал для прохождения тестирования:


Оставьте свой коментарий или задайте вопрос воспользовавшись формой для комментариев "Вконтакте", администратор ответит на ваш вопрос.

Просим вас соблюдать следующие правила при коментировании!
Назад к содержимому | Назад к главному меню